Numerical Simulation of Separation Bubble on Elliptic Cylinders Using Three-equation k-? Turbulence Model
نویسنده
چکیده مقاله:
Occurrence of laminar separation bubbles on solid walls of an elliptic cylinder has been simulated using a recently developed transitional model for boundary layer flows. Computational method is based on the solution of the Reynolds averaged Navier-Stokes (RANS) equations and the eddy-viscosity concept. Transitional model tries to simulate streamwise fluctuations, induced by freestream turbulence, in pre-transitional boundary layer flows by introducing an additional transport equation for laminar kinetic energy term. It includes three transport equations of turbulent kinetic energy, KT, laminar kinetic energy, KL, and dissipation rate frequency, ?. Numerical results show that the model is capable of predicting each of subcritical (final separation in laminar), critical (existence of bubble/bubbles) and supercritical (final separation in turbulent) flow regimes. Laminar separation bubble is simulated precisely, due to the modeling of transition from laminar to turbulent in separated free shear layer. Separation bubble region and its characteristics were detected by inspection on the distributions of surface pressure and skin friction, and also by streamlines pattern. Excellent agreements were observed between results obtained through current mathematical modeling with available experimental data for all the flow regimes. In addition, some of the results of the present numerical method are compared to those obtained through application of conventional fully laminar and fully turbulent standard k-? models.
منابع مشابه
Study of Parameters Affecting Separation Bubble Size in High Speed Flows using k-ω Turbulence Model
Shock waves generated at different parts of vehicle interact with the boundary layer over the surface at high Mach flows. The adverse pressure gradient across strong shock wave causes the flow to separate and peak loads are generated at separation and reattachment points. The size of separation bubble in the shock boundary layer interaction flows depends on various parameters. Reynolds-averaged...
متن کاملNumerical Simulation of Laminar Separation-Bubble Control
In the present paper an active control mechanism for the control of laminar separation bubbles on airfoils is investigated by means of direct numerical simulation and linear stability theory. Boundary layer instabilities excited by periodic oscillations are utilized to control the size and length of the separation bubble and to make it finally disappear when desired. Unlike traditional vortex g...
متن کاملExperimental study and numerical simulation of three dimensional two phase impinging jet flow using anisotropic turbulence model
Hydrodynamic of a turbulent impinging jet on a flat plate has been studied experimentally and numerically. Experiments were conducted for the Reynolds number range of 72000 to 102000 and a fixed jet-to-plate dimensionless distance of H/d=3.5. Based on the experimental setup, a multi-phase numerical model was simulated to predict flow properties of impinging jets using two turbulent models. Mesh...
متن کاملDirect Numerical Simulation of Flow Past Elliptic Cylinders
number [4] or flows at early times after an impulsive start [5]. Experimental techniques have become very sophistiFlow over elliptic cylinders can be considered prototypical of flow over a range of bluff bodies since the geometry allows one to study cated in recent years but an extensive spatial and temporal the effect of both thickness and angle-of-attack on the flow field. analysis of the thr...
متن کاملNumerical Simulation of Confined Vortex Flow Using a Modified k Turbulence Model
The turbulent flow in a tangential inlet / tangential outlet vortex tube is numerically simulated using a modified k turbulence model. The results are compared to experimental measurements from literature. The modified model shows better agreement with the local tangential velocity measurements compared to the standard and RNG k turbulence models. The flow structure is also demonstrated...
متن کاملNumerical Simulation of Air Flow around the NP Car Using the Realizable k-ε Turbulence Model to Predict Aerodynamic Forces and Moments
In this study, a numerical computational fluid dynamics study is conducted in order to predict the aerodynamic forces on the NP car. The turbulent air flow around the car is modeled using the realizable k-ε model. First, results are validated against those presented for the Ahmed’s body. Next, the fluid flow around the car is simulated for different car speeds ( to mph) and fl...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 5 شماره 2
صفحات 57- 66
تاریخ انتشار 2629-07-23
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023